The 3-color Ramsey number of a 3-uniform Berge-cycle
نویسندگان
چکیده
The asymptotics of 2-color Ramsey numbers of loose and tight cycles in 3-uniform hypergraphs have been recently determined ([16], [17]). We address here the same problem for Berge-cycles and for 3 colors. Our main result is that the 3-color Ramsey number of a 3-uniform Berge cycle of length n is asymptotic to 5n 4 . The result is proved with the Regularity Lemma via the existence of a monochromatic connected matching covering asymptotically 4n/5 vertices in the multicolored 2-shadow graph induced by the coloring of K (3) n .
منابع مشابه
The 3-Colour Ramsey Number of a 3-Uniform Berge Cycle
The asymptotics of 2-colour Ramsey numbers of loose and tight cycles in 3-uniform hypergraphs were recently determined [16, 17]. We address the same problem for Berge cycles and for 3 colours. Our main result is that the 3-colour Ramsey number of a 3-uniform Berge cycle of length n is asymptotic to 5n 4 . The result is proved with the Regularity Lemma via the existence of a monochromatic connec...
متن کاملThe Ramsey Number of Loose Triangles and Quadrangles in Hypergraphs
Asymptotic values of hypergraph Ramsey numbers for loose cycles (and paths) were determined recently. Here we determine some of them exactly, for example the 2-color hypergraph Ramsey number of a k-uniform loose 3-cycle or 4-cycle: R(Ck 3 , Ck 3 ) = 3k − 2 and R(Ck 4 , Ck 4 ) = 4k − 3 (for k > 3). For more than 3 colors we could prove only that R(C3 3 , C3 3 , C3 3) = 8. Nevertheless, the r-col...
متن کاملThe 3-colored Ramsey number for a 3-uniform loose path of length 3
The values of hypergraph 2-color Ramsey numbers for loose cycles and paths have already been determined. The only known value for more than 2 colors is R(C 3 ; 3) = 8, where C 3 3 is a 3-uniform loose cycle of length 3. Here we determine that R(P 3 3 ; 3) = 9, where P 3 3 is a 3-uniform loose path of length 3. Our proof relies on the determination of the Turán number ex3(9;P 3 3 ). We also find...
متن کاملZarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کاملThe Ramsey Number of Loose Paths in 3-Uniform Hypergraphs
Recently, asymptotic values of 2-color Ramsey numbers for loose cycles and also loose paths were determined. Here we determine the 2-color Ramsey number of 3-uniform loose paths when one of the paths is significantly larger than the other: for every n > ⌊ 5m 4 ⌋ , we show that R(P n,P m) = 2n + ⌊m + 1 2 ⌋ .
متن کامل